サイトアイコン

Kaggleで勝つデータ分析の技術

Kaggleで勝つデータ分析の技術

出版社: 技術評論社

ジャンル: データ・AI

著者:門脇大輔, 阪田隆司, 保坂桂佑, 平松雄司

レビュー:

ISBNコード: 9784297108434

概要:

データサイエンスの認知の高まりとともに、データ分析に関するコンペティションが多数開催されるようになってきました。最も有名なコンペティションプラットフォームであるKaggleにおけるプレイヤー数は10万人を超え、多くのエンジニアが自分の腕を試すためにコンペティションに参加しています。分析コンペでは、実際のデータを扱うため、機械学習の解説書にはあまり載っていないような手法やテクニックが数多く活用されています。これらを理解し自身で使えるようにしておくことはコンペだけでなく、実務でのモデル構築において非常に役に立ちます。 そこでこれらのテクニックや事例を多くの人に知っていただくために、現時点で最新のものを整理して本書にまとめました。特徴量の作り方、バリデーション、パラメータチューニングなどについて、一般的な書籍ではあまり言及されない暗黙知やポイントについて記述しています。分析コンペにこれから参加してみたい方、あるいはもっと上を目指したい方だけでなく、実務で予測モデルの精度を上げたいという方にも参考になる情報が多いでしょう。
広告・PR: リンク経由の購入で収益を得る場合があります。

参考価格: 3608
※ 価格は変動する場合があります。

 

 

概要:

データサイエンスの認知の高まりとともに、データ分析に関するコンペティションが多数開催されるようになってきました。最も有名なコンペティションプラットフォームであるKaggleにおけるプレイヤー数は10万人を超え、多くのエンジニアが自分の腕を試すためにコンペティションに参加しています。分析コンペでは、実際のデータを扱うため、機械学習の解説書にはあまり載っていないような手法やテクニックが数多く活用されています。これらを理解し自身で使えるようにしておくことはコンペだけでなく、実務でのモデル構築において非常に役に立ちます。 そこでこれらのテクニックや事例を多くの人に知っていただくために、現時点で最新のものを整理して本書にまとめました。特徴量の作り方、バリデーション、パラメータチューニングなどについて、一般的な書籍ではあまり言及されない暗黙知やポイントについて記述しています。分析コンペにこれから参加してみたい方、あるいはもっと上を目指したい方だけでなく、実務で予測モデルの精度を上げたいという方にも参考になる情報が多いでしょう。
広告・PR: リンク経由の購入で収益を得る場合があります。

参考価格: 3608
※ 価格は変動する場合があります。

 

 

レビュー一覧